Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 4327

Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and... more...

This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has... more...

The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not... more...

Over the past 50 years, Meriam & Kraige's Engineering Mechanics: Statics has established a highly respected tradition of excellence--a tradition that emphasizes accuracy, rigor, clarity, and applications. Now in a Sixth Edition, this classic text builds on these strengths, adding a comprehensive course management system, Wiley Plus, to the text, including an e-text, homework management, animations of concepts, and additional teaching and learning... more...

Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems... more...


The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently.... more...

One could make the claim that all branches of physics are basically generalizations of classical mechanics. It is also often the first course which is taught to physics students. The approach of this book is to construct an intermediate discipline between general courses of physics and analytical mechanics, using more sophisticated mathematical tools. The aim of this book is to prepare a self-consistent and compact text that is very useful for... more...

This distinctive textbook aims to introduce readers to the basic structures of the mechanics of deformable bodies, with a special emphasis on the description of the elastic behavior of simple materials and structures composed by elastic beams.  The authors take a deductive rather than inductive approach and start from a few first, foundational principles.  A wide selection of exercises, many with hints and solutions, are... more...

Written for courses in Fluid Mechanics in Civil and Mechanical Engineering, this text covers the fundamental principles of fluid mechanics, as well as specialist topics in more depth. The fundamental material relates to all engineering disciplines that require fluid mechanics. As in previous editions this book demonstrates the link between theory and practice with excellent examples and computer programs. The programs help students perform 3 types of... more...

Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of “unusual” physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle, the methods of Nonlinear Dynamics appeared to be very diverse, individual and technically complicated. This book makes an attempt to find a common... more...