Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 484

This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental... more...

This introduction to the fascinating subject of black holes fills a significant gap in the literature which exists between popular, non-mathematical expositions and advanced textbooks at the research level. It is designed for advanced undergraduates and first year postgraduates as a useful stepping-stone to the advanced literature. The book provides an accessible introduction to the exact solutions of Einstein's vacuum field equations describing... more...

Based on Prof. Lüst's Masters course at the University of Munich, this book begins with a short introduction to general relativity. It then presents black hole solutions, and discusses Penrose diagrams, black hole thermodynamics and entropy, the Unruh effect, Hawking radiation, the black hole information problem, black holes in supergravity and string theory, the black hole microstate counting in string theory, asymptotic symmetries in... more...

These lecture notes are intended for starting PhD students in theoretical physics who have a working knowledge of General Relativity. The four topics covered are: Surface charges as conserved quantities in theories of gravity; Classical and holographic features of three-dimensional Einstein gravity;  Asymptotically flat spacetimes in four dimensions: BMS group and memory effects;... more...

What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions. After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter... more...


This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen... more...

Mass determination is of fundamental importance for science, technology and economics. Technical measuring systems range from ultramicro balances to weighing machines for freight trains; massive objects range from subatomic particles to galaxies. Comprehensive and topical, this reference work - edited by scientists of the Physikalisch-Technische Bundesanstalt, Germany - covers the whole field of mass determination. Starting from physical foundations,... more...

Gravitational lensing is by now sufficiently well understood that it can be used as a tool of investigation in other astrophysical areas. Applications include the determination of the Hubble constant, probing the dark matter context of galaxies and the mapping of the universe to the identification of otherwise invisible large-scale structures. Each chapter of the book covers in a self-contained manner a subfield of gravitational lensing, with the... more...

Three key aspects of quantum gravity are considered in this book: phenomenology, potential experimental aspects and foundational theory. The phenomenology is the treatment of metric quantum fluctuations as torsional curves that deviate from classical expectations. This leads to possible experimental configurations that may detect such fluctuations. Most of these proposed experiments are quantum optical measurements of subtle quantum gravity effects in... more...

This thesis represents a unique mix of theoretical work discussing the Lorentz theory of gravity and experimental work searching for supersymmetry with the Compact Muon Solenoid experiment at the Large Hadron Collider. It begins by reviewing a set of widely-discussed theoretical solutions to the cosmological constant problem, including a natural solution provided by the recently developed Lorentz gauge theory of gravity. The Schwartzschild metric, de... more...