Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 2769

First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.

This monograph deals with the Riemannian geometry of both symplectic and contact manifolds, with particular emphasis on the latter. The text is carefully presented. Topics unfold systematically from Chapter 1, which examines the general theory of symplectic manifolds. Principal circle bundles (Chapter 2) are then discussed as a prelude to the Boothby--Wang fibration of a compact regular contact manifold in Chapter 3, which deals with the... more...

This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written... more...

Book by Davis, Philip J., Gautschi, Walter, Iserles, Arieh

Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes more than 650 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 25 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything... more...


Thorough coverage is given to the fundamental concepts of topology, axiomatic set theory, mappings, cardinal numbers, ordinal numbers, metric spaces, topological spaces, separation axioms, Cartesian products, the elements of homotopy theory, and other topics. A comprehensive study aid for the graduate student and beyond.

Although contact geometry and topology is briefly discussed in V I Arnol'd's book "Mathematical Methods of Classical Mechanics "(Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential... more...

This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all... more...

It is rarely taught in undergraduate or even graduate curricula that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. This fact is taught in most complex analysis courses. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition... more...

This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book... more...