Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 3294

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric... more...

The study of formal languages and automata has proved to be a source of much interest and discussion amongst mathematicians in recent times. This book, written by Professor Ian Chiswell, attempts to provide a comprehensive textbook for undergraduate and postgraduate mathematicians with an interest in this developing field. The first three Chapters give a rigorous proof that various notions of recursively enumerable language are equivalent. Chapter Four... more...

This book brings together many of the important results in this field. From the reviews: ""A classic gets even better....The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic... more...

Boiled-down essentials of the top-selling Schaum's Outline series for the student with limited time What could be better than the bestselling Schaum's Outline series? For students looking for a quick nuts-and-bolts overview, it would have to be Schaum's Easy Outline series. Every book in this series is a pared-down, simplified, and tightly focused version of its predecessor. With an emphasis on clarity and brevity, each new title... more...

This book details the heart and soul of modern commutative and algebraic geometry. It covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: a significantly updated... more...


This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as  nonequispaced  and sparse FFTs in higher dimensions.... more...

 Trigonometry for Engineering Technology is designed to teach the fundamentals to students new to the subject and is also useful for in-house training programs and as a self-study refresher. The text uses mechanical, civil, and architectural applications to enhance its explanations of real-world scenarios. Its open format enables it to be used as a workbook either in class or for independent study.  In addition to its thorough... more...

This volume in matrix structural analysis is written for senior undergraduate students. Matrix structural analysis is presented in the various chapters for structures modeled as beams, plane frames, grid frames, space frames, plane trusses, and space trusses. An introduction to the related topic of the finite element method is also given. Throughout the book, illustrative examples are given with detailed solutions derived from hand calculations and... more...

This book is designed as a text for the first year of graduate algebra, but it can also serve as a reference since it contains more advanced topics as well. This second edition has a different organization than the first. It begins with a discussion of the cubic and quartic equations, which leads into permutations, group theory, and Galois theory (for finite extensions; infinite Galois theory is discussed later in the book). The study of groups... more...

This book provides a definition of Green functors for a finite group G, and of modules over it, in terms of the category of finite G-sets. Some classical constructions, such as the associated categroy or algebra, have a natural interpretation in that framework. Many notions of ring theory can be extended to Green functors (opposite Green functor, bimodules, Morita theory, simple modules, centres,...). There are moreover connections between Green... more...