Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 3310

Gilbert Strang's textbooks have changed the entire approach to learning linear algebra -- away from abstract vector spaces to specific examples of the four fundamental subspaces: the column space and nullspace of A and A'. This new fifth edition has become more than a textbook for the basic linear algebra course. That is its first purpose and always will be. The new chapters about applications of the SVD, probability and statistics, and... more...

Every mathematician, and user of mathematics, needs to manipulate sums or to find and handle combinatorial identities. In this book, the author provides a coherent tour of many known finite algebraic sums and offers a guide for devising simple ways of changing a given sum to a standard form that can be evaluated . As such, Summa Summarum serves as both an introduction and a reference for researchers, graduate and upper-level undergraduate students, and... more...

This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties... more...

The representation theory of the symmetric groups is a classical topic that, since the pioneering work of Frobenius, Schur and Young, has grown into a huge body of theory, with many important connections to other areas of mathematics and physics. This self-contained book provides a detailed introduction to the subject, covering classical topics such as the Littlewood-Richardson rule and the Schur-Weyl duality. Importantly the authors also present many... more...

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt construction for p-groups, p != 2, as well as Hilbert's irreducibility theorem and the large sieve inequality, are... more...


Analysis, assessment, and data management are core competencies for operation research analysts. This volume addresses a number of issues and developed methods for improving those skills. It is an outgrowth of a conference held in April 2013 at the Hellenic Military Academy, and brings together a broad variety of mathematical methods and theories with several applications. It discusses directions and pursuits of scientists that pertain... more...

One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts.   This book presents different approaches to a rigorous unified... more...

This book is a written-up and expanded version of eight lectures on the Hodge theory of projective manifolds. It assumes very little background and aims at describing how the theory becomes progressively richer and more beautiful as one specializes from Riemannian, to Kähler, to complex projective manifolds. Though the proof of the Hodge Theorem is omitted, its consequences topological, geometrical and algebraic are discussed at some length. The... more...

THE PROGRAM STUDENTS NEED; THE FOCUS TEACHERS WANT! Glencoe Pre-Algebra is a key program in our vertically aligned high school mathematics series developed to help all students achieve a better understanding of mathematics and improve their mathematics scores on today’s high-stakes assessments.

Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting... more...