Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 3295

Algebraic Cryptanalysis bridges the gap between a course in cryptography, and being able to read the cryptanalytic literature. This book is divided into three parts: Part One covers the process of turning a cipher into a system of equations; Part Two covers finite field linear algebra; Part Three covers the solution of Polynomial Systems of Equations, with a survey of the methods used in practice, including SAT-solvers and the methods of Nicolas... more...

The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC)... more...

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used... more...

An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods... more...

Previous edition sold 2000 copies in 3 years; Explores the subtle connections between Number Theory, Classical Geometry and Modern Algebra; Over 180 illustrations, as well as text and Maple files, are available via the web facilitate understanding: http://mathsgi01.rutgers.edu/cgi-bin/wrap/gtoth/; Contains an insert with 4-color illustrations; Includes numerous examples and worked-out problems


This introductory textbook for a graduate course in pure mathematics provides a gateway into the two difficult fields of algebraic geometry and commutative algebra. Algebraic geometry, supported fundamentally by commutative algebra, is a cornerstone of pure mathematics. Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. A selection is made from the wealth of... more...

Graphs and Matrices provides a welcome addition to the rapidly expanding selection of literature in this field. As the title suggests, the book’s primary focus is graph theory, with an emphasis on topics relating to linear algebra and matrix theory. Information is presented at a relatively elementary level with the view of leading the student into further research. In the first part of the book matrix preliminaries are discussed and the basic... more...

Permutation groups are one of the oldest topics in algebra. Their study has recently been revolutionized by new developments, particularly the Classification of Finite Simple Groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introduced that can deal with large permutation groups. This text summarizes these developments, including an introduction to relevant computer algebra systems, sketch... more...

This book has arisen from the author's successful course at Liverpool University. The text covers all the essentials in a style that is detailed and expertly written by one of the foremost researchers and teachers working in the field. Ideal for either course use or independent study, the volume guides students through the key concepts that will enable them to move on to more detailed study or research within the field.

With the advent of computers that can handle symbolic manipulations, abstract algebra can now be applied. In this book David Joyner, Richard Kreminski, and Joann Turisco introduce a wide range of abstract algebra with relevant and interesting applications, from error-correcting codes to cryptography to the group theory of Rubik's cube. They cover basic topics such as the Euclidean algorithm, encryption, and permutations. Hamming codes... more...