Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 1-10 results of 8819

Artificial Intelligence is the most exciting technology of the century, and Deep Learning is, quite literally, the "brain" behind the world's smartest Artificial Intelligence systems out there. Grokking Deep Learning is the perfect place to begin the deep learning journey. Rather than just learning the "black box" API of some library or framework, readers will actually understand how to build these algorithms... more...

Uncertainty is a fundamental and unavoidable feature of daily life; in order to deal with uncertaintly intelligently, we need to be able to represent it and reason about it. In this book, Joseph Halpern examines formal ways of representing uncertainty and considers various logics for reasoning about it. While the ideas presented are formalized in terms of definitions and theorems, the emphasis is on the philosophy of representing and reasoning about... more...

This book reflects the author’s years of hands-on experience as an academic and practitioner. It is primarily intended for executives, managers and practitioners who want to redefine the way they think about artificial intelligence (AI) and other exponential technologies. Accordingly the book, which is structured as a collection of largely self-contained articles, includes both general strategic reflections and detailed... more...

A Turing Prize-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of... more...

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and... more...


Providing detailed examples of simple applications, this new book introduces the use of neural networks. It covers simple neural nets for pattern classification; pattern association; neural networks based on competition; adaptive-resonance theory; and more. For professionals working with neural networks.

Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to... more...

Many industry experts consider unsupervised learning the next AI frontier, one that may hold the key to general artificial intelligence. Armed with the conceptual knowledge in this book, data scientists and machine learning practitioners will learn hands-on how to apply unsupervised learning to large unlabeled datasets using Python tools. You’ll uncover hidden patterns, gain deeper business insight, detect anomalies,... more...

This book provides a practical introduction to computationally solving discrete optimization problems using dynamic programming. From the examples presented, readers should more easily be able to formulate dynamic programming solutions to their own problems of interest. We also provide and describe the design, implementation, and use of a software tool that has been used to numerically solve all of the problems presented earlier in the... more...

Knowing the safety factor for limit states such as plastic collapse, low cycle fatigue or ratcheting is always a major design consideration for civil and mechanical engineering structures that are subjected to loads. Direct methods of limit or shakedown analysis that proceed to directly find the limit states offer a better alternative than exact time-stepping calculations as, on one hand, an exact loading history is scarcely known, and... more...