Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.
Showing: 11-20 results of 142

Written for advanced undergraduate students, this highly regarded book presents an enormous amount of information in a concise and accessible format. Beginning with the assumption that the reader has never seen a matrix before, the authors go on to provide a survey of a substantial part of the field, including many areas of modern research interest. Part One of the book covers not only the standard ideas of matrix... more...

This brief monograph by one of the great mathematicians of the early twentieth century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals. Author G. N. Watson begins by reviewing various propositions of... more...

Classic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary... more...

This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of... more...

Starting with the fundamentals of number theory, this text advances to an intermediate level. Author Harold N. Shapiro, Professor Emeritus of Mathematics at New York University's Courant Institute, addresses this treatment toward advanced undergraduates and graduate students. Selected chapters, sections, and exercises are appropriate for undergraduate courses. The first five chapters focus on the basic material of number theory,... more...


Over 1500 problems on theory of functions of the complex variable; coverage of nearly every branch of classical function theory. Topics include conformal mappings, integrals and power series, Laurent series, parametric integrals, integrals of the Cauchy type, analytic continuation, Riemann surfaces, much more. Answers and solutions at end of text. Bibliographical references. 1965 edition.

The theory of ordinary differential equations in real and complex domains is here clearly explained and analyzed. Not only classical theory, but also the main developments of modern times are covered. Exhaustive sections on the existence and nature of solutions, continuous transformation groups, the algebraic theory of linear differential systems, and the solution of differential equations by contour integration are... more...

Combining three books into a single volume, this text comprises Multicolor Problems, dealing with several of the classical map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; and Random Walks, addressing basic problems in probability theory. The book's primary aim is not so much to impart new information as to teach an active, creative attitude toward mathematics. The... more...

Advanced undergraduates and graduate students studying quantum mechanics will find this text a valuable guide to mathematical methods. Emphasizing the unity of a variety of different techniques, it is enduringly relevant to many physical systems outside the domain of quantum theory. Concise in its presentation, this text covers eigenvalue problems in classical physics, orthogonal functions and expansions, the Sturm-Liouville theory and... more...

The ultimate aim of the field of numerical analysis is to provide convenient methods for obtaining useful solutions to mathematical problems and for extracting useful information from available solutions which are not expressed in tractable forms. This well-known, highly respected volume provides an introduction to the fundamental processes of numerical analysis, including substantial grounding in the basic... more...