Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Download links will be available after you disable the ad blocker and reload the page.

A Turing Prize-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of... more...

How the study of causality revolutionized science and the world "Correlation does not imply causation." This mantra has been invoked by scientists for decades, and has led to a virtual prohibition on causal talk. But today, that taboo is dead. The causal revolution, sparked by Judea Pearl and his colleagues, has cut through a century of confusion and placed causality--the study of cause and effect--on a firm scientific basis. His... more...

Causal Inference in Statistics: A Primer Judea Pearl, Computer Science and Statistics, University of California Los Angeles, USA Madelyn Glymour, Philosophy, Carnegie Mellon University, Pittsburgh, USA and Nicholas P. Jewell, Biostatistics, University of California, Berkeley, USA Causality is central to the understanding and use of data. Without an understanding of cause effect relationships, we cannot use... more...

Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative,... more...

Problem-solving strartegies and the nature of Heuristic information. Heuristics and problem representations. Basic Heuristic-Search procedures. Formal properties of Heuristic methods. Heuristics viewed as information provided by simplified models. Performance analysis of Heuristic methods. Abstract models for quantitative performace analysis. Complexity versus precision of admissible Heuristics. Searching with nonadmissible Heuristics.... more...

Written by one of the preeminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, economics, philosophy, cognitive science, and the health and social sciences. Judea Pearl presents and unifies the probabilistic, manipulative,... more...

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic... more...