Showing: 1-10 results of 2331

How can linkages, pieces of paper, and polyhedra be folded? The authors present hundreds of results and over 60 unsolved 'open problems' in this comprehensive look at the mathematics of folding, with an emphasis on algorithmic or computational aspects. Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s, but have only recently been studied in the mathematical literature. Over the past decade, there has been a... more...

Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory?  Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar?  Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical... more...

The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and... more...

Linear algebra occupies a central place in modern mathematics. This book provides a rigorous and thorough development of linear algebra at an advanced level, and is directed at graduate students and professional mathematicians. It approaches linear algebra from an algebraic point of view, but its selection of topics is governed not only for their importance in linear algebra itself, but also for their applications throughout... more...

The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested... more...


Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry Convex Geometry and Asymptotic Geometric Analysis Differential Topology of 4-Manifolds 3-Dimensional Contact Geometry Floer Homology and Low-Dimensional Topology Kähler Geometry... more...

An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference... more...

This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative almost like a story being told that does not impede sophistication and deep... more...

The study of the zeroes of polynomials, which for one variable is essentially algebraic, becomes a geometric theory for several variables. In this book, Fischer looks at the classic entry point to the subject: plane algebraic curves. Here one quickly sees the mix of algebra and geometry, as well as analysis and topology, that is typical of complex algebraic geometry, but without the need for advanced techniques from commutative algebra or the abstract... more...

This book discusses how to design "good" geometric puzzles: two-dimensional dissection puzzles, polyhedral dissections, and burrs. It outlines major categories of geometric puzzles and provides examples, sometimes going into the history and philosophy of those examples. The author presents challenges and thoughtful questions, as well as practical design and woodworking tips to encourage the reader to build his own puzzles and experiment with his own... more...